

NEW RESAMPLING KERNEL AND ITS EFFECT ON RAPIDEYE IMAGERY

Andreas Brunn, Ellis Freedman and Dr. Robert Fleming

- Image Resampler in General
- The Serious Science CMTF Resampler
- Comparison Constant MTF (CMTF) Standard Cubic Convolution (CC)
- Conclusion

IMAGE RESAMPLER IN GENERAL

 Images are resampled everywhere where the shape or size of an Image needs to be changed.
E.G.:

- Zoom, Rotate
- Map Projection,
- Geometric Correction
- Coregistration
- etc.

- Resamplers go back more than 20 years (e.g. Wolberg, 1990).
- Resamplers are algorithms used to represent an a priori grid to new points in a different grid that does not necessarily correspond to the pixel location of the original map.
- This often requires an interpolation of values to locations in between the originally spaced pixels

- Several standard resamplers are known
 - Nearest Neighbor & Cubic Convolution are the best known
- Interpolators are normally represented as a convolution kernel that is a function of interpolation distance.
- No interpolator is perfect
 - The desired pixel shift is never fully achieved
 - Different blur introduced for each pixel shift distance

	Pixel Shift	Cubic Convolution Coefficients			
	1/32	-0.0147	0.9976	0.0175	-0.0005
1	3/32	-0.0385	0.9793	0.0632	-0.0040
	5/32	-0.0556	0.9447	0.1212	-0.0103
	7/32	-0.0668	0.8961	0.1894	-0.018
	9/32	-0.0726	0.8356	0.2655	-0.0284
	11/32	-0.0740	0.7655	0.3473	-0.0388
	13/32	-0.0716	0.6880	0.4326	-0.0490
	15/32	-0.0661	0.6052	0.5193	-0.0584

Dr. Robert Fleming and Ellis Freedman (Serious Science) developed a resampling kernel which is meant to correct the flaws in common Interpolators (Freedman, JACIE 2012)

- Virtually constant MTF across different pixel shift distances
- Allows one MTFC to be applied to interpolated images and achieve a unity MTF while correctly shifting pixels.
- Highly linear phase (distortionless filter)

THE SERIOUS SCIENCE CMTF RESAMPLER

RapidEye

CMTF THEORETIC RESULTS

RESULTS ACHIEVED ON REAL IMAGES

- The original Resampler was a two step approach
 - resampling
 - image restoration
- RapidEye Ground Processor can by default only handle one step resamplers
- Serious Science LLC combined the two step approach to only one set of parameters to be used in the default RapidEye processing chain.

COMPARISON BETWEEN CC AND CMTF

Test Site: Maricopa County, AZ

- Agricultural area 50 km West of Phoenix
- Different crop types and growing stages built up good edges

VISUAL COMPARISON

VISUAL COMPARISON

- Edges on CMTF processed images look visually sharper than those on CC processed images
- CC processed images show a colored frame (rainbow) around the edges on rgb color composites
- Automatic band to band registration is improved with CMTF Kernel compared to standard CC

STATISTICAL COMPARISON

RapidEye

Statistical Parameters

Statistical Parameters are very much alike

Means match better than 1/10 of a percent

Stddev match to better than 1%. Reason is probably that the CC Kernel usually smooths the results

Image Mean

SIGNAL TO NOISE RATIO (SNR)

- Signal to Noise Ratio in percent of the un-resampled image subset
- No surprise that the smoothing effect of CC improves SNR compared to CMTF

 It is assumed that the Point Spread Function is a normal distribution (Gaussian)

$$H(x) = \frac{1}{\sigma_H \sqrt{2 \cdot \pi}} \cdot e^{-\frac{x}{2 \cdot \sigma_H^2}}$$

- The size of $\sigma_{\rm H}$ gives a quantitative value for the assessment of the PSF
- $\sigma_{\rm H}$ is used as a description of the change by the application of the different resampling kernels
 - A smaller σ indicates a sharper image with a better RER and MTF

Reulke, JACIE 2011

April 10, 2013

SPATIAL RESOLUTION ANALYSIS

 Edge response of dark/bright transitions is used to model the PSF

Horizontal Edge

SPATIAL RESOLUTION ANALYSIS

Lower values are better

DIFFERENCE IMAGE

- It is not possible to compare the different resampling kernels against the unresampled image (coregistration needs resampling)
- The assumption is that the CMTF Kernel keeps the EDGE sharpness constant
- Difference Image shows especially large differences of more than 20 % of the image DN at the field boundaries

CONCLUSION

- CMTF resampler doesn't change the image statistics
- Due to image smoothing the CC Kernel improves the Signal to Noise Ratio (lowpass filter)
- CMTF resampling kernel does not degrade image MTF and leads to improved RER and visual sharpness impression

=> The interpretability of the images is improved when resampled using the CMTF resampler

Andreas Brunn, Head of Calibration and Validation <u>brunn@rapideye.com</u>

Ellis Freedman, Owner, Serious Science LLC <u>serioussciencellc@gmail.com</u>

Dr. Robert Fleming,

RapidEye :: Delivering the World

Germany | USA | Canada | Luxembourg

info@rapideye.com www.rapideye.com

